SBS200 Exam 2 Review

Feb. 26. 2019

TA: Hyungjun Suh
Timeline

15min – review of materials
10min – solve practice questions individually
25min – go over answers and Q&A
THIS IS NOT AN ALL-INCLUSIVE REVIEW!!!

-> Students still need to review textbooks, readings, lecture PPTs, and writing/homework assignments, etc.
Seven types of studies

1) Confidence Intervals: using a sample statistic, guessing a range of the mean in the population with a level of confidence.

2) T-test: comparing means of two groups and decide the statistical significance (generalization from the sample to the population) of the difference.

3) One-way ANOVA: same with t-test, but with three or more groups/levels.
Seven types of studies

4) Two-way ANOVA: similar with one-way ANOVA, but with two independent variables. Levels of independent variable can be two or more.

5) Correlation: getting the extent to which two quantitative (continuous) variables move together.

6) Simple/multiple regression: using the correlation to predict the value of the dependent variable based on the independent variable. It could have multiple independent variables.

7) Chi Square: to test whether two categorical variables are associated.
Z-score: Why?

- Distributions often have different scales so that it is hard to compare with each other.
- e.g.) income distribution between the U.S. and European countries.
- Z-score allows distributions with all different scales to be comparable.
Z-score and raw score calculation

\[Z - score_i = \frac{Raw \ score_i - Mean}{S.D.} \]

\[Raw \ score_i = Mean + (Z - score_i \times S.D.) \]

This part needs to be calculated first because this is multiplication.
Characteristics of the standard normal distribution

- Mean = 0; S.D. = 1
- Total area under the curve = 1 (meaning 100% of the distribution)
- The area is **symmetrical** centering on its mean
 - The whole area of each side from the mean is 50% or 0.5
How to read the z-score table

The ones and tenths place of Z-scores

<table>
<thead>
<tr>
<th>z</th>
<th>.00</th>
<th>.01</th>
<th>.02</th>
<th>.03</th>
<th>.04</th>
<th>.05</th>
<th>.06</th>
<th>.07</th>
<th>.08</th>
<th>.09</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.000</td>
<td>.004</td>
<td>.008</td>
<td>.012</td>
<td>.016</td>
<td>.020</td>
<td>.024</td>
<td>.029</td>
<td>.033</td>
<td>.037</td>
</tr>
<tr>
<td>0.1</td>
<td>.039</td>
<td>.043</td>
<td>.048</td>
<td>.052</td>
<td>.057</td>
<td>.061</td>
<td>.066</td>
<td>.071</td>
<td>.075</td>
<td>.079</td>
</tr>
<tr>
<td>0.2</td>
<td>.079</td>
<td>.083</td>
<td>.087</td>
<td>.091</td>
<td>.096</td>
<td>.100</td>
<td>.104</td>
<td>.109</td>
<td>.113</td>
<td>.117</td>
</tr>
<tr>
<td>0.3</td>
<td>.117</td>
<td>.121</td>
<td>.125</td>
<td>.129</td>
<td>.133</td>
<td>.138</td>
<td>.142</td>
<td>.146</td>
<td>.150</td>
<td>.154</td>
</tr>
<tr>
<td>0.4</td>
<td>.155</td>
<td>.159</td>
<td>.162</td>
<td>.166</td>
<td>.170</td>
<td>.174</td>
<td>.178</td>
<td>.182</td>
<td>.186</td>
<td>.190</td>
</tr>
<tr>
<td>0.6</td>
<td>.226</td>
<td>.230</td>
<td>.234</td>
<td>.238</td>
<td>.242</td>
<td>.246</td>
<td>.250</td>
<td>.254</td>
<td>.258</td>
<td>.262</td>
</tr>
<tr>
<td>0.7</td>
<td>.262</td>
<td>.266</td>
<td>.270</td>
<td>.274</td>
<td>.278</td>
<td>.282</td>
<td>.286</td>
<td>.290</td>
<td>.294</td>
<td>.298</td>
</tr>
<tr>
<td>0.8</td>
<td>.298</td>
<td>.302</td>
<td>.306</td>
<td>.310</td>
<td>.314</td>
<td>.318</td>
<td>.322</td>
<td>.326</td>
<td>.330</td>
<td>.334</td>
</tr>
<tr>
<td>0.9</td>
<td>.334</td>
<td>.338</td>
<td>.342</td>
<td>.346</td>
<td>.350</td>
<td>.354</td>
<td>.358</td>
<td>.362</td>
<td>.366</td>
<td>.370</td>
</tr>
<tr>
<td>1.0</td>
<td>.370</td>
<td>.374</td>
<td>.378</td>
<td>.382</td>
<td>.386</td>
<td>.390</td>
<td>.394</td>
<td>.398</td>
<td>.402</td>
<td>.406</td>
</tr>
<tr>
<td>1.1</td>
<td>.406</td>
<td>.410</td>
<td>.414</td>
<td>.418</td>
<td>.422</td>
<td>.426</td>
<td>.430</td>
<td>.434</td>
<td>.438</td>
<td>.442</td>
</tr>
<tr>
<td>1.2</td>
<td>.442</td>
<td>.446</td>
<td>.450</td>
<td>.454</td>
<td>.458</td>
<td>.462</td>
<td>.466</td>
<td>.470</td>
<td>.474</td>
<td>.478</td>
</tr>
<tr>
<td>1.3</td>
<td>.478</td>
<td>.482</td>
<td>.486</td>
<td>.490</td>
<td>.494</td>
<td>.498</td>
<td>.502</td>
<td>.506</td>
<td>.510</td>
<td>.514</td>
</tr>
<tr>
<td>1.4</td>
<td>.514</td>
<td>.518</td>
<td>.522</td>
<td>.526</td>
<td>.530</td>
<td>.534</td>
<td>.538</td>
<td>.542</td>
<td>.546</td>
<td>.550</td>
</tr>
<tr>
<td>1.5</td>
<td>.550</td>
<td>.554</td>
<td>.558</td>
<td>.562</td>
<td>.566</td>
<td>.570</td>
<td>.574</td>
<td>.578</td>
<td>.582</td>
<td>.586</td>
</tr>
</tbody>
</table>

The hundredths place of Z-scores

- e.g. z = 0.74?
 \[z = 0.74 \]
 \[= 1.39 \]

z = 1.39?
Finding the area under the standard normal distribution

1) Obtain z-score
2) Shade the target area
3) Read the table and give an answer
Finding the area under the standard normal distribution

1) Obtain z-score. This time it will be a negative value

2) Shade the target area

3) Read the table of the absolute value of z-score (because they are symmetric so that it will be the same area)

4) Give an answer
Finding the area under the standard normal distribution

1) Obtain z-score
2) Shade the target area
3) ① = 50% or 0.5, because it is a half
4) Obtain ② as the first type
5) Give an answer by summing ① and ② up
Finding the area under the standard normal distribution

1) Obtain z-score
2) Shade the target area
3) Obtain areas for each part as the first and second type.
4) Give an answer by summing ① and ② up
5) If absolute values of two z-scores are the same, (e.g., -2 and 2), you can obtain the area of the one part and multiply by 2
Finding the area under the standard normal distribution

1) Obtain z-score
2) Shade the target area
3) Obtain ① as the second type
4) Give an answer by subtracting ① from 0.5. It will be ②
Central Limit Theorem

As the number of observations increases,

- The sample mean will approach the population mean.
- The sampling distribution of means will be approximately normal.
- The standard error of means decreases.